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Multifractal a priori probability distribution for the perceptron
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We calculate the multifractal spectrum of thepriori probability distribution for a perceptron.
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In an effort to understand the ability of artificial networks  The perceptror{13] is a classifier characterized by an
to learn by example, a lot of research has been devoted ré¢-dimensional synaptic vectal, that returns the following
cently to the study of very simple learning scenarios, inbinary outputé, when presented with an input patteﬁfn
which all the details of the learning process can be calculated L.
analytically[1-10]. In classification problems, the aim is to _ J-€
learn the rule that lies at the basis of a set of observed train- €0=59 W
ing examples. This, however, is only possible if one has
some prior knowledge about the problem. In a Bayesian We start by evaluating the priori probability distribution
framework, this knowledge is quantified by the so-calied of this perceptron for the case of input patterns with binary
priori probability distribution, defined as the probability for
any of the possible classification rules to be traepriori.
The role of thea priori probability distribution is particularly
clear in one of the simpler theories of learning a rule by
example[11,12), since it allows for the direct evaluation of 1wt b 1
the generalization error. In machines that learn from ex-
amples, such as Boolean or neural networks, ahgriori
probability distribution is dictated by the architecture of the
network. Although thea priori probability distribution has
been calculated numerically for a number of interesting case:
[11,12, we are not aware of any analytic results. Further-
more, the numerical results suggest that this distribution may 10"
typically have fractal properties. In this paper we confirm
this suspicion by an analytic calculation of tagriori prob-
ability distribution for a simple perceptron. It is found to be | ILIE LG 1A Y
a monofractal forN, the number of input channels of the 0 2
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FIG. 2. A priori probability distribution for patterns at the cor-
FIG. 1. lllustration of the classifications induced on the cornersners of the hypercube in dimensiddft Monte Carlo results foN
of the cube N=3). =5 (a) andN=6 (b).
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FIG. 3. Multifractal spectrunc(k) as obtained from Eq(4)
combined with the numerical samplings presented in Figs. 2 and 4
[full lines: theory, cf. Eq(9); dotted lines: patterns at the corners of ~ (a) classification
the hypercube; dashed lines: random patterns; the curve with the .
higher maximum in each case correspondsNte 6, the lower
maximum toN=>5].

components;=+1 or — 1. In total, there are"® such input

patterns, namely, all the corners of the hypercube in dimen- B
sionN. Every choice ofl, which are taken at random on the

N spherejzz N, will induce a specific classification of these
patterns. Apart from the well known fact that only linearly
separable classifications can be implemented, we observe

that the latter are, in fact, typically implemented with widely 107
differenta priori probabilities. This is illustrated in Fig. 1 for
il ; ; I H ‘
’ ‘ Il i il

probability
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the caseN=3. In this low-dimensional situation, only two 107
types of classifications are possible, namely, those pointing

more or less in the direction of the corners of the c(there 107
are eight of these, corresponding to the eight corners of the

cube, see, e.gd;), and those with & vector more or less o S
parallel to one of the axes of the cubhere are six such FIG. 4. A priori probability distribution for 2' random patterns
classifications, corresponding to the three axes, each with dimensionN: Monte Carlo results foN=5 (a) andN=6 (b).
two directions, see, e.gfg). However, it is clear from Fig. 1
that J, can move around in a larger solid angle than
without modifying the classification of the corners of the
hypercube. By an explicit calculation, one finds that the re
spective solid angles are equal 02— 3arcsin(1/3) and
4arcsin(1/3). Thea priori probability thus consists of eight

(b) classification

The difference between both results is explained by the fact
that thep=2N patterns that sit at the corners of the hyper-
cube do not lie in a general configuration, so that the number
of dichotomies that can be induced is much smaller.

In order to extract fractal or multifractal properties of a

; ; _ : probability distribution such as the one represented in Fig. 2,
peaks of size 1/8 arcsin(1/3/(4m) =0.0439 and six peaks one first needs to understand the correct scaling behavior

of size arcsin(1/3)#=0.1082. All the other 256 14=242 with N. Indeed, one expects that Ak the number of

classifications cannot be implemented and have prObabIII%eaks in the probability distribution will diverge while the

zero. Results for higher dimension are more difficult to ob size of the peaks will go to zero. For pattems in a random
tain analytically, but can be obtained numerically by gener'configuration, we obtain from Eq2) (o directly from Sau-

ating vectorsJ with random orientation, and verifying which er's bound[14], which gives the same resyltthat for p
input-output table is reproduced. In Fig. 2, we have collected. )N the nymper of classifications that can be implemented,
results forN = 5 and 6. Note that only a very small fraction j o ' the number of nonzero peaks in the probability distribu-
of tables out of the total of e can be generated by the tion, increases as

perceptron. We find 4, 14, 104, 1882, and 94 572 different

tables forN = 2, 3, 4, 5, and 6, respectively. These numbers )

should be compared with the result of Cover in Ref], W~ NNz, ©)
which gives the numbew of linearly separable classifica-

ions for rns chosen at random in dimensin . .
tions for p patterns chosen at rando dimenshe Even though we have not been able to prove that this scaling

2°, p<N remains valid for the corners of the hyperculéich do not
N-1 lie in a general configuration we have applied it to the
= 22 (Efl) p=N. 2 numerical results from Fig. 2. To find the multifractal spec-
k=0 ' trum c(k) [15], we first evaluate its Legendre transform:
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where the sum over runs over all the classifications that where the product ovee runs over all possible binary pat-

. - ) : . terns (2" factorg and the sum oveg” over all their possible
have a nonzera priori probability P;. k is the singularity L 3
exponent of the probabilitf ~exp(—Nk), while c(k) cor- classifications (2 termg. Unfortunately, we have not been

responds to the divergence as e(k)] of the number of able to evaluate the above expression, when the pat{téﬁ}s

re the corners of the hypercube. The main problem is that
such singularities. By inverse Legendre transform, one fmd%ese batterns are not ramiom no that one ca?mot Serform an

average that renders the calculation feasible.
In order to make progress, we turn to thepriori prob-
ability for a somewhat artificial but nevertheless interesting
_ case, namely, that qf=2N patterns{£*} randomly chosen
c(k) eétl{¢(R)+ RK]. ® on the sphere. One expects thgiR) is self-averaging, and
the average can be evaluated through a technique introduced
some time ago by Monasson and O’Kdrié], and applied
recently in the context of the perceptrfl8]. In fact, for the
present problem, an important simplification takes place,
The results are represented in Fig. 3. One would hope to s&fince it turns out that the annealed approximation, in which
convergence to a limiting form foN large. Unfortunately the average can be moved inside the logarithm, is correct.
our results are restricted to rather small valuedpfo that  Since all the 2 terms mE{gu} are equal when the average is

we could not get conclusive evidence. Turning to an analytigerformed, the remaining calculation is in fact identical to

approach, one notes that(R), defined in Eq.(4), can be the standard Gardner calculation, but wRtplaying the role
written explicitly as follows: of the usual replica inder:

R

p
fdj 8(J2—N ]'_[ CIRERZS

1
d(R)=($(R))=lim =\ In>

N— N (e fdj S(32—N)
R
. JdJ 5(3%— N)H O(J- &)
= lim —In2P
N—e N? 3 o372
dJ 8(32—N)

Copying the well known replica symmetric result from the point now is to find the correct scaling for, which has the
Gardner calculatiofisee, e.g.[4], but using the result before ysual meaning of the typical overlap for two vectdrmside
the limitn=R—0 is taken, see also E(.22 in[17]and  the regions that give the dominant contribution ¢gR).

Eq. (16) in [18] ] we find Since the number of these regions diverges asN#ptheir
typical size will be of the order of exp(N?), so thatq will
1 N(R—1) N go to 1 in the limitN— . The correct larg&l behavior ofg
¢(R)= lim — extr| In(1—qg)+ =In[1 can be inferred from more or less intuitive arguments. Here,
N N2 2 2 we just note that the scaling
t\Vg
+(R—-1)q]+pIn 2f Dt HR<—> ] 7
v1—q . N2 ®
q: - )
whereDt=exp(—t%/2)/\27 andH(x) = [;Dt. The delicate 22N
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whereu is of order one, yields the required result. The pref-
actorp=2N is neutralized and a remaining factoritf can-
cels the one in front of the brackets in E@). Furthermore,
by including lower order correctionfl9], one obtains a
bona-fide saddle point equation for the new variajple
which can moreover be solved explicitly. By combining Egs.
(7) and(8), one thus finds
|+

2fwdu [HR(w+HR(—u)—1]
0

V2m(1-R)

Since the Legendre transform of-R is a constant, we con-
clude that to dominant order iN the spectrum is a mono-
fractal with all the regions equally large. Their total number

is of course exactly given by'\ﬁ, in agreement with the
Cover-Sauer result. The monofractal behavior persists if th
logarithmic correction irN is included. Only at the level of
1/N corrections does a genuine multifractal spectrum aris
To compare these largd analytic results with numerical
finite size results, we have performed Monte Carlo simula
tions for the case gb= 2" random patterns in the same way
as we did for the binary patterns. The profiles that are ob
tained forN=5 andN=6 are shown in Fig. 4, while the

1
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numerical results for the multifractal spectrum and compari-

son with the theory, cf. Eq9), are included in Fig. 3. The
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working with very small values dil. One also notes that the
spectrum is clearly different from the one for the hypercube,
although the overall shape is the the same.

We close with a discussion of the above problem from a
more geometric perspective. Consider the surface of\the
sphere as it is being cut into pieces pyarge circles with
random orientation. With increasing the number of these
pieces increases and their size decreases. The geometric
properties of this randomly broken object can, in the limit
N—oo and with an appropriate corresponding scalingoof
be characterized by a multifractal spectrum. The latter was
calculated in[18] for p=aN, with « finite. Here, we con-
sidered the more unusual scalipg 2N. Surprisingly, and in
contrast to the multifractal behavior far~N, we find that
the spectrum is monofractal, at least to dominant ordé¥.in
Hence the siz& that appears most often is also the size that
covers almost all the surface of the sphere. As a result, pick-
ing at random one linearly separable classification from all
the linearly separable classifications on a sepef2N ran-
dom examples is tantamount to picking a random perceptron
teacher on the sphere. This, however, is no longer true for

?)~N, where the multifractal nature is in fact responsible for

the distinction between the storage and generalization prob-

Sem [18]. The difference between the~N and p=2N is,

however, not entirely unexpected since a monofractal behav-
ior is approached fop=aN in the limit a—o. A monof-
ractal behavior to dominant order bf is therefore expected

for any scaling in whiclp increases faster thax.
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