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Multifractal a priori probability distribution for the perceptron
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We calculate the multifractal spectrum of thea priori probability distribution for a perceptron.
@S1063-651X~98!14902-4#
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In an effort to understand the ability of artificial network
to learn by example, a lot of research has been devoted
cently to the study of very simple learning scenarios,
which all the details of the learning process can be calcula
analytically @1–10#. In classification problems, the aim is t
learn the rule that lies at the basis of a set of observed tr
ing examples. This, however, is only possible if one h
some prior knowledge about the problem. In a Bayes
framework, this knowledge is quantified by the so-calleda
priori probability distribution, defined as the probability fo
any of the possible classification rules to be true,a priori.
The role of thea priori probability distribution is particularly
clear in one of the simpler theories of learning a rule
example@11,12#, since it allows for the direct evaluation o
the generalization error. In machines that learn from
amples, such as Boolean or neural networks, thea priori
probability distribution is dictated by the architecture of t
network. Although thea priori probability distribution has
been calculated numerically for a number of interesting ca
@11,12#, we are not aware of any analytic results. Furth
more, the numerical results suggest that this distribution m
typically have fractal properties. In this paper we confi
this suspicion by an analytic calculation of thea priori prob-
ability distribution for a simple perceptron. It is found to b
a monofractal forN, the number of input channels of th
perceptron, going tò , but it becomes a multifractal if finite
size corrections are included.

FIG. 1. Illustration of the classifications induced on the corn
of the cube (N53).
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The perceptron@13# is a classifier characterized by a
N-dimensional synaptic vectorJW , that returns the following
binary outputjo when presented with an input patternjW :

jo5sgnS JW•jW

AN
D . ~1!

We start by evaluating thea priori probability distribution
of this perceptron for the case of input patterns with bina

s
FIG. 2. A priori probability distribution for patterns at the cor

ners of the hypercube in dimensionN: Monte Carlo results forN
55 ~a! andN56 ~b!.
3660 © 1998 The American Physical Society



r
y

n

h

e
e

li

r

n
r

fact
r-
ber

a
. 2,
vior

e
om

ed,
u-

ling

c-

f
t
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componentsj i511 or 21. In total, there are 2N such input
patterns, namely, all the corners of the hypercube in dime
sionN. Every choice ofJW , which are taken at random on the
N sphere,JW25N, will induce a specific classification of these
patterns. Apart from the well known fact that only linearly
separable classifications can be implemented, we obse
that the latter are, in fact, typically implemented with widel
differenta priori probabilities. This is illustrated in Fig. 1 for
the caseN53. In this low-dimensional situation, only two
types of classifications are possible, namely, those pointi
more or less in the direction of the corners of the cube~there
are eight of these, corresponding to the eight corners of t
cube, see, e.g.,JW1), and those with aJW vector more or less
parallel to one of the axes of the cube~there are six such
classifications, corresponding to the three axes, each w
two directions, see, e.g.,JW2). However, it is clear from Fig. 1
that JW2 can move around in a larger solid angle thanJW1
without modifying the classification of the corners of th
hypercube. By an explicit calculation, one finds that the r
spective solid angles are equal top/223arcsin(1/3) and
4arcsin(1/3). Thea priori probability thus consists of eight
peaks of size 1/823arcsin(1/3)/(4p)50.0439 and six peaks
of size arcsin(1/3)/p50.1082. All the other 2562145242
classifications cannot be implemented and have probabi
zero. Results for higher dimension are more difficult to ob
tain analytically, but can be obtained numerically by gene
ating vectorsJW with random orientation, and verifying which
input-output table is reproduced. In Fig. 2, we have collecte
results forN 5 5 and 6. Note that only a very small fraction
of tables out of the total of 22

N
can be generated by the

perceptron. We find 4, 14, 104, 1882, and 94 572 differe
tables forN 5 2, 3, 4, 5, and 6, respectively. These numbe
should be compared with the result of Cover in Ref.@4#,
which gives the numberW of linearly separable classifica-
tions for p patterns chosen at random in dimensionN:

W5H 2p, p<N

2 (
k50

N21

~k
p21!, p>N.

~2!

FIG. 3. Multifractal spectrumc(k) as obtained from Eq.~4!
combined with the numerical samplings presented in Figs. 2 and
@full lines: theory, cf. Eq.~9!; dotted lines: patterns at the corners o
the hypercube; dashed lines: random patterns; the curve with
higher maximum in each case corresponds toN56, the lower
maximum toN55#.
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The difference between both results is explained by the
that thep52N patterns that sit at the corners of the hype
cube do not lie in a general configuration, so that the num
of dichotomies that can be induced is much smaller.

In order to extract fractal or multifractal properties of
probability distribution such as the one represented in Fig
one first needs to understand the correct scaling beha
with N. Indeed, one expects that asN→` the number of
peaks in the probability distribution will diverge while th
size of the peaks will go to zero. For patterns in a rand
configuration, we obtain from Eq.~2! ~or directly from Sau-
er’s bound@14#, which gives the same result!, that for p
52N the number of classifications that can be implement
i.e., the number of nonzero peaks in the probability distrib
tion, increases as

W;eN2ln2. ~3!

Even though we have not been able to prove that this sca
remains valid for the corners of the hypercube~which do not
lie in a general configuration!, we have applied it to the
numerical results from Fig. 2. To find the multifractal spe
trum c(k) @15#, we first evaluate its Legendre transform:

4

he

FIG. 4. A priori probability distribution for 2N random patterns
in dimensionN: Monte Carlo results forN55 ~a! andN56 ~b!.
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f~R!5 lim
N→`

ln(
i

Pi
R

N2
5 lim

N→`

lnE dk eN2@c~k!2Rk#

N2

5extr
k

@c~k!2Rk#, ~4!

where the sum overi runs over all the classifications tha
have a nonzeroa priori probability Pi . k is the singularity
exponent of the probabilityP;exp(2N2k), while c(k) cor-
responds to the divergence as exp@N2c(k)# of the number of
such singularities. By inverse Legendre transform, one fi

c~k!5extr
R

@f~R!1Rk#. ~5!

The results are represented in Fig. 3. One would hope to
convergence to a limiting form forN large. Unfortunately
our results are restricted to rather small values ofN, so that
we could not get conclusive evidence. Turning to an anal
approach, one notes thatf(R), defined in Eq.~4!, can be
written explicitly as follows:
e

s

ee

ic

f~R!5 lim
N→`

1

N2
ln(

$jo
m%

35 E dJW d~JW22N! )
m51

2N

Q~JW•jmW jo
m!

E dJW d~JW22N! 6
R

, ~6!

where the product overm runs over all possible binary pat
terns (2N factors! and the sum overjo

m over all their possible
classifications (22

N
terms!. Unfortunately, we have not bee

able to evaluate the above expression, when the patterns$jWm%
are the corners of the hypercube. The main problem is
these patterns are not random, so that one cannot perfor
average that renders the calculation feasible.

In order to make progress, we turn to thea priori prob-
ability for a somewhat artificial but nevertheless interest
case, namely, that ofp52N patterns$jWm% randomly chosen
on the sphere. One expects thatf(R) is self-averaging, and
the average can be evaluated through a technique introd
some time ago by Monasson and O’Kane@16#, and applied
recently in the context of the perceptron@18#. In fact, for the
present problem, an important simplification takes pla
since it turns out that the annealed approximation, in wh
the average can be moved inside the logarithm, is corr
Since all the 2p terms in($jo

m% are equal when the average

performed, the remaining calculation is in fact identical
the standard Gardner calculation, but withR playing the role
of the usual replica indexn:
f~R!5^f~R!&5 lim
N→`

1

N2K ln(
$jo

m%
H E dJW d~JW22N! )

m51

p

Q~JW•jmW jo
m!

E dJW d~JW22N!
J RL

5 lim
N→`

1

N2
ln2pK H E dJW d~JW22N! )

m51

p

Q~JW•jmW jo
m!

E dJW d~JW22N!
J RL .
re,
Copying the well known replica symmetric result from th
Gardner calculation†see, e.g.,@4#, but using the result before
the limit n5R→0 is taken, see also Eq.~2.22! in @17# and
Eq. ~16! in @18# ‡ we find

f~R!5 lim
N→`

1

N2
extr

q
H N~R21!

2
ln~12q!1

N

2
ln@1

1~R21!q#1plnF2E Dt HRS tAq

A12q
D G J , ~7!

whereDt5exp(2t2/2)/A2p andH(x)5*x
`Dt. The delicate
point now is to find the correct scaling forq, which has the
usual meaning of the typical overlap for two vectorsJW inside
the regions that give the dominant contribution tof(R).
Since the number of these regions diverges as exp(N2), their
typical size will be of the order of exp(2N2), so thatq will
go to 1 in the limitN→`. The correct largeN behavior ofq
can be inferred from more or less intuitive arguments. He
we just note that the scaling

q512
m2N2

22N
, ~8!
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wherem is of order one, yields the required result. The pr
actorp52N is neutralized and a remaining factor inN2 can-
cels the one in front of the brackets in Eq.~7!. Furthermore,
by including lower order corrections@19#, one obtains a
bona-fide saddle point equation for the new variablem,
which can moreover be solved explicitly. By combining Eq
~7! and ~8!, one thus finds

f~R!5~12R!S ln22
lnN

N
1

1

ND1
1

N
H lnR

2
1~12R!

3 ln

2E
0

`

du @HR~u!1HR~2u!21#

A2p~12R!
J . ~9!

Since the Legendre transform of 12R is a constant, we con
clude that to dominant order inN the spectrum is a mono
fractal with all the regions equally large. Their total numb
is of course exactly given by 2N2

, in agreement with the
Cover-Sauer result. The monofractal behavior persists if
logarithmic correction inN is included. Only at the level o
1/N corrections does a genuine multifractal spectrum ar
To compare these largeN analytic results with numerica
finite size results, we have performed Monte Carlo simu
tions for the case ofp52N random patterns in the same wa
as we did for the binary patterns. The profiles that are
tained for N55 and N56 are shown in Fig. 4, while the
numerical results for the multifractal spectrum and comp
son with the theory, cf. Eq.~9!, are included in Fig. 3. The
agreement is reasonable taking into account that we
,
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working with very small values ofN. One also notes that th
spectrum is clearly different from the one for the hypercu
although the overall shape is the the same.

We close with a discussion of the above problem from
more geometric perspective. Consider the surface of thN
sphere as it is being cut into pieces byp large circles with
random orientation. With increasingp, the number of these
pieces increases and their size decreases. The geom
properties of this randomly broken object can, in the lim
N→` and with an appropriate corresponding scaling ofp,
be characterized by a multifractal spectrum. The latter w
calculated in@18# for p5aN, with a finite. Here, we con-
sidered the more unusual scalingp52N. Surprisingly, and in
contrast to the multifractal behavior forp;N, we find that
the spectrum is monofractal, at least to dominant order inN.
Hence the sizek that appears most often is also the size t
covers almost all the surface of the sphere. As a result, p
ing at random one linearly separable classification from
the linearly separable classifications on a set ofp52N ran-
dom examples is tantamount to picking a random percep
teacher on the sphere. This, however, is no longer true
p;N, where the multifractal nature is in fact responsible f
the distinction between the storage and generalization p
lem @18#. The difference between thep;N and p52N is,
however, not entirely unexpected since a monofractal beh
ior is approached forp5aN in the limit a→`. A monof-
ractal behavior to dominant order ofN is therefore expected
for any scaling in whichp increases faster thanN.
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